
Efficient Parallelization of a Dynamic Unstructured
Application on the Tera MTA

LEONID OLIKER l

,\'_tion,ll Eneujy Research Scientific Computin.q Center

._lail Stop 50B-2239, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

1ol ikerOlbl, gov

RUPAK BISWAS 2

MRJ Technology Solutions

Mail Stop T27A-1, NASA Ames Research Center, Moffett Field, CA 94035

rbi swas©nas, nasa. gov

Abstract

The success of parallel computing in solving real-life computationally-intensive problems

relies on their efficient mapping and execution on large-scale multiprocessor architectures.
Many important applications are both unstructured and dynamic in nature, making their

efficient parallel implementation a daunting task. This paper presents the parallelization

of a dynamic unstructured mesh adaptation algorithm using three popular programming

paradigms on three leading supercomputers. We examine a.n MPI message-passing imple-

mentation on the Cray T3E and the SGI Origin2000, a. shared-memory implementation

using cache coherent nonuniform memory access (CC-NUMA) of the Origin2000, and a

multithreaded version on the newly-released Tera Multithreaded Architecture (MTA). We
compare several critical factors of this parallel code development, including runtime, scala-

bility, programmability, and memory overhead. Our overall results demonstrate that multi-

threaded systems offer tremendous potential for quickly and efficiently solving some of the

most challenging real-life problems on parallel computers.

1. Introduction

The success of parallel computing in solving real-life computationally-il_tensive problems

relies on their efficient mapping and execution on large-scale multiprocessor architectures.
When the algorithms and data structures corresponding to these problems are intrinsically

unstructured or dynamic in nature, efficient implementation on state-of-the-art parallel ma-

chines offers considerable challenges, lJnstru(,tured applications are ('haracterized by irregu-

lar data access patterns, and are inherently at odds with cache-based systems which attempt

to hide memory latency I)y copying and reusing contiguous Mocks of data. Dynamic and

a(ta ptive applications, on the other hand, have computational workh)ads which grow or shrink

at rmitime, and require dynamic load balancing to achieve algorithmic scaling on parallel
rnachines.

Many imi)ortant apl)lications are both ttt_strtwture(t and dynamic, making their efficient par-

i Work supl)orted by Director, Otticc of Computational and Technology R.csear(:h, Division of ,Mathemat-
ical, lnforrnalion, and Compul, ational S('i<,nc<,so[tim U.S. Departnmni of Ene.rgy under contract number
DE-AC03-76SF00098.

_D,'(,rk st£pportcd by National Aeronautics arm Space Admirfistraliori trader c(ml.racl, rmrn|wx NAS 2-14303
with MRJ Technology Solutions.

allel ilnpl(,m(,ntation a daunting task. Exa.ml)les include scientific computing, task sch(,dul-

ing, sparse matrix computations, parallel discrete event simulation, data mining, and web

server applications. This paper presents the parallelization of a dynamic unstructured mesh

adaptati(m algorithm using three popular programming paradigms on three state-of-the-

art parallel architectures. We (,xamine an MPI message-passing implementation on the

Crav T3E and the SGI ()rigin201)0, a shared-memory implementation using cache coherent

nommiform memory access (CC-NUMA) of the Origin2000, and a multithreaded version

on the newly-released Tera Multithreaded Architecture (MTA). We compare several critical

fiwtors of this parallel code development, including runtime, scalability, programmability,

and memory overhead.

The ability to dynamically adapt an unstructured mesh is a powerful tool for efficiently

solving ('omputational problems with evolving physical features. Standard fixed-mesh nu-

merical methods can be made more cost effective by locally refining and coarsening the
mesh to capture these phenomena of interest. Unfortunately, an efficient parailelization of

adaptive methods is rather difficult, primarily due to the load imbalance created by the
dynamically-changing nonuniform grids. Nonetheless, is it generally believed that adaptive

unstructured:grid techniques will constitute a significant fraction of future high-performance
supercomputing.

Recently, three different parallel architectures have emerged, each with its own programming
paradigms. On distributed-memory systems, each processor has its own local memory that

only it can directly access. To access the memory of another processor, a copy of the desired

data must be explicitly sent across the network using a message-passing library such as MPI

or PVM. To run a program on such machines, the programmer must decide how the data

should be distributed among the local memories, and reshuffled when necessary. This allows

the user to design efficient programs at the cost of increased code complexity.

In distributed shared-memory architectures, each processor has a local memory but also has

direct access to all the memory in the system. On the Origin2000, for example, each processor

uses a local cache to fetch and store data. Cache coherence is managed by hardware. Parallel

programs are relatively easy to implement on such systems since each processor has a global

view of the entire memory. Parallelism can be easily achieved by inserting directives into

the code to distribute loop iterations among the processors. However, portability may be

diminished, and sophisticated "cache programming" may be necessary to enhance parallel
performance.

Using multithreading to build commercial parallel computers is a radically new concept in

contrast to the standard "monothreaded" microprocessors of traditional supercomputers.
For example, the Tera MTA processors each use up to 128 threads. Such machines can

potentially utilize substantially more of its processing power by tolerating memory latency

and using low-level synchronization directives. This architecture is especially well-suited for
irregular and dynamic problems. Parallel programmability is simplified since the user has a

global view of the memory, and need not be concerned with the data layout.

2. Unstructured Mesh Adaptation

For problems that (,volve with time, mesh adaptation procedures have proved to be robust,

reliable, and efficient. Highly localized regions of mesh refinement are required to accurately

capture sho(,l¢ wav(,s. ('onta(,t discontinuities, vortices, and shear layers. This provides sci-

2

entists tile' ¢,I_l)ortunity to _l_t_lin soluti¢_lls OU a.dapte¢[meshes tlm.t are ¢'Omlmra.ble to those

ol;)t.ailw¢l ¢_TI,zh)l)a.lly-relincc[:.,;i¢ls l)l_t a.t a mlwh Iow(,r (-()st.

In this l)_ll)(U', we l)aralh'li/_, a tw¢)-dime_lsiom/l iLllstl'lwtured mc,sh a(lal)ta.tiozl algorithm

based _ll triaJigular ('t('l_l('_lts: ¢¢)tnl)h'te details of tlk(' tllre(,-diuwilsi¢)llal l)roc'edure is given

in [!]. Ill l)rie[', 1o¢'a.1 mesh a dapta.tion involves a.dclitlg p()ints t() tile existil_g grid in regions

where ,¢_mc user-sl)ecified _,rr,_r indicator is high, amt removing l)oints from regions where

th(' in(li,;_t()r is low. The a.(lv, I_tage ¢7fsuc'b stra.tegi_,s is that rela.tively few _;wsh points need

to lie _¢l(t('(t ur deleted a.t e_¢-h refinemetit/c.oarsenitig step for unstead.v l_rol)lems. However,

compli¢'_tt¢,d 1_2i¢, and data strt_ctt_res are r¢,quired to keep track of the m_,sh objects (points,

edges, ul¢,m¢,m.s) that are added and removed. It involv¢,s a great deal of "pointer chasing",

leading to irregular and dvuami¢" data a ct'ess pattertis.

3. Test Problem

The computational mesh used for the experiments i_ this paper is the one used to simulate

flow over an airfoil (see Fig. 1 for the coarse initial mesh). Mesh refinement occurs around

the stagnation point at the leading edge of the airfoil. At transonic Mach numbers, shocks

form on both the upper and lower surfaces of the a.irfoil that then propagate to the far

field. We simulate this actual scenario by geometrically adapting regions corresponding to

the loca.tions of the stagnation point and the shocks. This allows us to investigate the

performance of the mesh adaptation and load balancing algorithms in the absence of a flog,
solver.

Figure 1: :\ ¢'losc-ul_ xi¢,w _1" the i_fitia, I tria_?ular/_¢'sl_ ar¢_m_¢[_he airfoil.

Ta.bh,I I)l,._.llr_ tilt ;>r_rt'_M_m _,f :_ri,l _i/e_ rhr_l:_,t_ li\,, h.x_,l_ _1 reti_l{'nl{'nt. The compu-

tatiomll I_. _}l _lIt{,r ti_{, _(,c{)n_I t'_'lill('tll{'llt is sh_)wJ_ il_ Viu. 9. F'{}r r{'I('rezme purposes, the
originsI _(_1i_1 _,){h' ,,,ll,i_t_ _[al)l)l()xit_mtdv l.:Ii]{} lil,,, ()f (' al_(l r('(luire.s 6.4 seconds to

(,xe(-ut(, tl,]_ _il_I_ti,,l_ {,H a 25t} XIII/ 7_lll).g [{ I1}{1(}(}i}r,_(.{,_)r.

lI .2h,,d_ Ii V(,rti(.{,s Tri;_nph,_, E{Ig{,s J]

T;_ I>h, 1:

Initial

T.vxd 1

l.('v{'t :2

l.{,v(,l 3

T.{,v(,l 1

I.{,v{,l 5

I I,G(}5 "28, i{}1 13,009

:26, "189 59,{)(}(} 88,991

{):2,925 156, 1!)8 235,T_1

169,933 .I.11, I t7 662,3.11
38(},877 l ,(}(I.'k:_13 1.505,02,1

188,57 1 "1,291,83 1 1,935,619

Progressi{m {>l"grid sizes tt_r{}ugh live lev{,ls of adaptation.

Figure :2: .\ clos('-Ul} view of the mesh 81"t{,r tl_(' se{-(m{t refinement.

4. Distributed-_lemory hnplementation

The dis* ri I)_tr{,(t-t_t,_t{,rv v('rsi{}r] ,,i the m{,sl_ n{lal}ta_i()_ (-{}{h' was iml}h, mt,nted in MPI within

thePI:lXl D;_,_,{,w{)_l< 5. Pl:l7_lisa_t a_t{)_ati('a_{I l},)rlal}h, load Imlan('ingenvironment,

Sl}e('iiic;_llv <r,,;_,,<l _,, !,a_(lh, _(I;_I)_iv(' _I_str_u'l_r{,,l :_,li,l ;_l)l>lic_ti(}l_s. It {liftbrs from most

other l_)ac[1)alancers in tha,t it dynamically 1)alances proeess_w worklomls with a global view.

PI:ITM e¢)l_sists of a l)artitiouer and a remapper that load I_alalwe and redistribute the compu-

tational mesh wheu necessary. After an initial part.iti(ming aud mapl)ing of the unstructured

mesh, a solver executes several iterations of the appli(-ation. The mesh adaptatiou pro('edure

thell marks edges for refinement or ('oarsening based on an error indicator (geolnetric for the

tests in this paper). Once edges have been marked, it is possible to exactly predict the new

mesh l)eli)re actually performing the adaptation step. Program control is thus passed to

the Mad I)alan(,er at this time. A repartitioning algorithm, like the ParMeTiS [4] l)arallel

multilevel partitioner, is used to divide the new mesh into subgrids. All necessary data. is

then redistributed, the computational mesh is actually refined, and the numerical (,al('ulation
restarte(t.

Several options may be set within PLUM, including predictive or non-predictive refinement,

global or diffusive partitioning, and synchronous or asynchronous communication. Tables 2

and 3 show the results for the best combination of these options on a T3E and an Origin2000,

through five refinement steps. The final paper will present a comprehensive comparison

among the various strategies. The T3E used for these experiments is a 640-node machine lo-

cated in the NERSC division of Lawrence Berkeley National Laboratory. Each node consists

of a 450 MHz DEC Alpha. processor, local memory, and some network interface hardware.

The Origin2000 is a 64-pr0cessor SMP cluster of R10000 MIPS microprocessors, located in
the NAS division of NASA Ames Research Center.

P

8 4.53 1.5 12.97 19.0

16 2.41 1.6 5.98 10.0

32 1.09 1.5 3.91 6.5

64 0.78 1.5 1.81 4.1

128 0.69 1.6 0.90 3.2

160 0.61 1.7 0.69 3.0

192 0.49 2.1 0.61 3.2

256 0.31 2.6 0.48 3.4

384 0.16 3.9 0.29 4.4

512 0.14 4.7 0.25 5.1

Time (secs) hnbalance Remap Data Volume (MB)

Refine Partition Remap Total Factor Maximum Total

1.02

1.03

1.05

68.04 286.80

28.11 270.18

16.76 281.17

6.88 280.30

4.41 290.10

4.24 284.41

3.12 292.39

2.34 310.82

1.33 301.58

0.99 310.40

1.07

1.09

1.14

1.15

1.16

1.19

1.25

Table 2: Performance of the MPI code on the T3E.

The general ruutime trends are similar on both archite('tures. Notice that more than 32 pro-

cess()rs are required to outl)erform the serial case, since the total runtime of the distributed

version includes the load balancing overhead. The refinement time decreases as the number

of pro(-essors P im'reases, sin('e there is less work per processor and little communication

in the relinemeut phase, llowever, the speedup values I)e(,ome progressively po()rer due to

the mwv(,n distribution of refinement workloads across the processors. Recall that our load

balancing ol)je(:tive is to produce a ha.lanced mesh fi)r the more expensive solver phase. Par-

titioning times rema.in somewhat constant for smaller values of P, but start t() grow and

eveutually d(mfimlt.e a.s P I)ecomes large. This is l)eca.use the amount of work and tlw com-

muui¢'atiou overhea(t ()f the pa.rtitioner increases with P. Finally, the data renml)l)ing time

P Refine

2 13.12 1.3 2,1.89 39.3
:1 11.72 1.2 16.67 29.6

8 8.31 1.4 10.23 19.9

16 5.0,1 1.3 5.57 11.9

32 2.28 1.7 2.82 6.8

6'1 1.41 2.3 1.69 5.4

Time (sees) hnbala.nce Re,nap Data \:olunH, (_IB)

Partition Remap Tota.I Factor _h_xinmm Total

1.00
1.00

1.02

1.02

1.05

1.08

50.11 60.64

35.59 88.58

30.21 151.75

13.57 121.06

7.77 118.55

4.17 132.34

Table 3: Performance of the MPI code on the Origin2000.

decreases as P increases. This satisfies our bottleneck commu.nication model which expresses

remapping as a function of the maximum (not total) communication among processors [5].
The slight difference in the amount of data volume between Tables 2 and 3 for the same value

of P is because the T3E has 8-byte integers whereas the Origin2000 has 4-byte integers.

This message-passing implementation of the adaptation algorithm required a significant

amount of programming effort, effectively doubling the size of the original serial code and

increasing the memory requirements by 70%. Only a fraction of the additional memory was
used for tracking edges and vertices residing on partition boundaries. Most of the memory

overhead was due to the send and receive buffers for the bulk MPI communication during

the remapping phase.

5. Shared-Memory Implementation

The shared-memory version of the mesh adaptation code was implemented on the CC-

NUMA Origin2000, which is a SMP cluster of nodes each containing two processors and local

memory. The hardware makes all memory equally accessible from a software standpoint, by

sending memory requests through routers located on the nodes. Access time to memory is

nonuniform, depending on how far away the memory lies from the processor. The topology

of the interconnection network is a hypercube, bounding the maximum number of memory

hops to a logarithmic function of P. Each processor also has a secondary cache memory,

where only it can fetch and store data. If a processor refers to data that is not in cache,

there is a delay while a copy of the data is fetched from memory. When a processor modifies

a word of data., all other copies of the cache line containing that word are invalidated. To

minimize overhead, cache coherence is managed by the hardware.

Tiffs version of the parallel code was written using SGI's native pragma directives, which

create IRIX threads. A rewrite to OpenMP would require minimal programming effort. The

main kernel of the refinement procedure consists of looping over the list of triangles. In the

shared-memory implementation, this work is split among all the processors. However, it is

n(,cessary to guarantee that multiple processors will not modify the same location in the

data structure. Two basic approaches were taken to achieve this goal.

The first strategy (ALL_COLOR) uses graph coloring to form independent sets, where two

triangles have different colors if they share a.n edge or a vertex. Since optimal graph coloring

is NP-coml)h,te, we use a. simt)le greedy algorithm. The processors can then work simultane-

6

ouslv on all tria.nglesof tile sa.nw color. Dynamic distrilmtion of loop iterations among the

[)rocessor_ is easily achieved through pragma, con_piler directives. Two algorithmic overheads

a,"_' ass(_riat(,d with this stra.tegy: the coloril_g of m,wly-fi)r_ned triangles on the fly, and a

Imrrier ,v_l(-hronization a.t the comi)letion of ea('h ('()lor I)et'me proc(,ssing of the next color

can I)egill.

The _e('ond strategy (NO_COLOR) uses low-level locks instead of graph coloring. When a

t hre_(l pro(-_,_,ses a. given triangle, it locks the (,orreuponding vertices and edges. Other threads

attempting to ac(:ess these mesh objects are l)h)('ked until the locks are released. The a.l-

_orithmic overhead lies in the idle time processors must spend while waiting for blocked

()l)jects to I)(, released. However, coloring or multiple I)arrier synchronizations are not re-

quired. Finally, a hybrid metho(l (HYBRID_COLOR) combines an edge-based coloring of the

triangles with verte×-based locks. Table 4 shows the timing results for all these approaches.

ALL_COLOR required 25 colors whereas HYBRID_COLOR needed 11 colors. Note that after

each adaI)tation, control would be passed to a shared-memory solver which uses the globally

addressable mesh for performing flow computations.

ALL_COLOR NO_COLOR HYBRID_COLOR

P Refine Color Total Total Refine Color Total

1 20.8 21.1 41.9

2 21.5 24.4 45.9

4 17.5 24.0 41.5

8 17.0 22.6 39.6

16 17.8 22.0 39.8

32 23.5 25.8 49.3

64 42.9 29.6 72.5

8.2

11.9

21.1

38.4

56.8

107.0

160.9

16.2 7.4 23.6

18.6 8.9 27.5

20.2 11.2 31.4

21.0 12.9 33.9

32.3 16.3 48.6

60.2 19.4 79.6

82.7 18.9 101.6

Table 4: Timings (in sees) of the CC-NUMA code on the Origin2000.

For ALL_COLOR, the total runt|me remains relatively constant regardless of P, although a.

significant performance degradation is seen between 32 and 64 processors. Several reasons

contribute to these poor performance numbers. First, single-processor cache performance is

extremely poor. On one processor, the refinement runt|me (20.8 sees) increases by a factor

of three compared to the serial ease (6.4 sees). This is because the triangles are processed

one color at a time, where two triangles of the same color are never adjacent. As a result, the

cache reuse rate drops dramatically from the serial ease where all the triangles are processed
in order.

Poor l)arallel performance also stems from the structure of the (:ode which assumes a flat

shared-memory model, and does not consider data. h)cality or cache effects. When triangles

of a particular color are being processed, each processor refines distinct triangles that have

non-overlapping edges and vertices. I]owever, since there is no explicit ordering of the data.

structures. (:a.che lines contain mesh objects which may I)e required by several processors
simultaneously. This false ,shaving problem is exacerbate(l when new mesh objects are created

during a refinement pha.s('. Each time a new word is written to cache, all (:()pies of that cache

line residing on other nodes are inwdi(tatcd. The har(Iwar(, system is therefl)re overloa(h'd

attempting to maintain ca.che-coherency in this environment. Also, the automatic l)age

migration option of the ()rigin2000cannot imln'oveparalM performance,sincea single page

of menmry may contain da.ta require<t I)v a.ll processors. Note that a lnore intelligent graph

coloring scheme could lower the number of colors and reduce graph coloring tittle, but would

not itnprove tire poor scala bility of tire refinement phase.

Relatively little effort was required to convert the serial code into the ALL_COLOR imple-

mentation. Parailelization was easily achieved by distributing loops across processors using

compiler directives. The addition of tile greedy graph coloring algorithm caused about a

10% increase in code size and a 5% increase iu memory requirements.

Timing results for the NO_COLOR approach are also shown in Table 4. Recall that low-level

locks are used here for synchronization and graph coloring is not needed. This simplifies

parallelization and requires minimal memory overhead. Unfortunately, the performance

of this approach is extremely poor on multiple processors. Notice that on one processor,

there is a small increase in the runtime (8.2 sees) compared to the original serial code

(6.4 sees). This is due to the overhead of setting, checking, and releasing low-level locks.

As P increases, however, performance rapidly deteriorates due to the fine granularity of the

critical sections. The processors are constantly contending to grab locks in order to modify

mesh data structures. In addition, blocked threads are unable to do any useful work and spin

idly waiting for access to locked data. It is obvious from these results that such fine-grain
synchronization is not suitable for this type of architecture. The HYBRID_METHOD, which

uses a combination of graph coloring and locks, also shows poor results for similar reasons.

One possible way to improve performance is to order the triangles, edges, and vertices, such

that each processor refines a contiguous section of the mesh. This would improve cache

reuse and reduce false sharing. To accomplish this, a domain decomposition algorithm such

as ParMeTiS [4] or a locality-enhancing strategy such as self-avoiding walks [3], is required.

All mesh objects could then be remapped or reordered accordingly. As the mesh grew after

each refinement step, another round of partitioning and remapping would be required. This

strategy would therefore make little sense since it is equivalent to the MPI implementation,

requiring a similar amount of programming effort and balancing overheads. The only major

difference would be the use of a global address space instead of explicit message-passing calls
for performing interprocessor communication.

6. Multithreaded Implementation

The Tera MTA is a supercomputer recently installed at the San Diego Supercomputing Cen-
ter. The MTA has a radically different architecture than current high-performance computer

systems. Each processor has support for 128 hardware streams, where each stream includes

a program counter and a set of 32 registers. One program thread can be assigne(l to each

stream. The processor switches among the active streams at every clock tick, while executing
a, pipelined instruction.

The uniform shared memory of the MTA is flat, and physically distril)uted across hundreds

of banks that are connected through a 3D toroidal network to the processors. All memory

addresses are hashed by the hardware so that apparently adjacent words are actually dis-

tributed across diflbrent memory banks. Because of the hashing scheme, it is impossible for

the programmer to control data placement. This tnakes programmability much easier than

on stanttard cache-based multiprocessor systems. Rather than using <lata caches to hide

latency, the MTA l)rocessors use multithreading to tolerate latency. If a thread is waiting

for its memory referetweto complete, th(' processor _'xecutes instructions from other threads.

Perforlnam-e thus depm_ds on having a large numl)er of concurrent computation threads.

Lightweight synchroni/ation a.mong threads is provided l)y the memory itself. Each word ()f

physica.] memory contains a full-empty bit, which enables fast synchronization via load and

stor_, instructions without el)crating system intervention. Synchronization among threads

may _rall one of the thr('a(ls, l)ut not the pro(-ess_)r <)n which the threads are nmning, since

ea(']l processor may run many threads. Explicit load I)_lan('ing across loops is also not

r(,(tltirt, d since the dynamic s('hedu[ing of work to threa(ls provides the ability of keeping the

processors saturate(I, even if (lifferent iterations require varying amounts of time to complete.

On('e a code has been written in the nmltithreaded model, no additional work is required to

run it on multiple processors, since there is no difference l)etween uni- and multiprocessor

parallelism.

The multithreadcd implementation of the mesh adaptation code is similar to the NO_COLOR
strateg,v used on the Origin2000. Low-level locks ensure that two neighboring triangles are

not updated simultaneously, since this may cause a race condition. A key difference from the

CC-NUMA implementation is the multiple execution streams on each processor. The load is

implicitly balanced by the operating system which dynamically assigns triangles to threads.

No partitioning, remapping, graph coloring, or explicit load balancing is required, greatly

simplifying the programming effort. Upon completion of the refinement phase, control would

be passed to a multithreaded flow solver [2]. Table 5 shows the performance on the 255 MHz

Term MTA, through five refinement levels. The number of streams is easily changed through

a compiler directive.

Number of Streams

P 100 80 60 40 1

1 2.04 2.22 2.72 3.82 150.1

2 1.06 1.15 1.40 1.98

,1 0.59 0.64 0.74 1.01

Table 5: Refinement timings (in sees) of the multithreaded code on the Tera MTA.

Results show that for 100 streams, a. single MTA processor (2.0,1 sees) outperforms the serial

R10000 version (6.4 sees) by more that a factor of three. With four processors, performance

continues to improve, achieving 86% efficiency with 100 streams and 95% efficiency with 40

streams. Notice that when the numl)er of streams drops from 100 to 80, there is only a slight

degradation in performance, indicating that 80 streams are sufficient for this problem. When

the numl)er of streams decreases to 40, however, there is a significant slowdown, although

the algorithm scales I)etter. These results indicate that there is enough instruc,tion level

l)alallelisnl in the mesh adaptation code to tolerate the overheads of memory access and

lightweight synchronization, if enough streams can l)e used.

By setting th(' MTA to s(,rial mode. we ('an run our ('ode using just one stream. The runtime

is almost 75 times slower than a single saturated multitl,reading processor. A single stream

can issm' only one instruction at a time, and then must wait the length of the instruction

l)ip('lin(' (at least 21 cy('h,s) I)(,fi)r(, issuing another. :\Is(), n<) useful work can be done while

inemorv is being fi'tched, since no other threads are actiw,.

:\ trivial amount of programming was required to convert the serial mesh a(taptation code

into the multithreaded version. The code size im,rease(l by al)out 2% for COml)iler directives

and lock pla('ements. An additional memory requirement of 7% was used to store synchro-

niza.tion variables that coordinated access to (tata during the adaptation procedure. We

h)ok forward to continuing our experiments as more processors become available on the Tera
MTA.

7. Conclusions

The goal of this work was to parallelize a dynamically adapting, unstructured mesh appli-

cation. It is particularly difficult to achieve good performance on such algorithms due to

their irregular and adaptive nature. We used three different programming paradigms on

state-of-the-art supercomputers to achieve our objective. Table 6 summarizes our findings.

Program Best Code Memory Scala- Porta-H

Paradigm System Time 3 Increase Increase bility bility II
Serial R10000 6.4 (P = 1)

MPI T3E 3.0 (P = 160) 100% 70% Medium High

MPI Origin2000 5.4 (P = 64) 100% 70% Medium High

CC-NUMA Origin2000 39.6 (P = 8) 10% 5% None Medium

Multithreading MTA 0.59 (P = 4) 2% 7% High 4 Low

Table 6: Comparison among programming paradigms and architectures.

The message-passing version demanded the greatest programming effort. Data had to be

explicitly decomposed across processors and special data structures had to be created for

mesh objects lying on partition boundaries. We used PLUM for dynamic load balancing,

which required repartitioning and data remapping between refinement phases. Significant

additional memory was also needed, mainly for the communication buffers. Despite these

drawbacks, the message-passing code showed reasonable scalability and can be easily ported

to any multiprocessor system supporting MPI.

The shared-memory CC-NUMA version required an order of magnitude less programming

effort than the MPI version, and had a low memory overhead. This code can be ported to any
system supporting a global address space. The ALL_COLOR strategy used graph coloring

to orchestrate mesh refinement, while the NO_COLOR strategy relied on low-level locldng

mechanisms. UIffortunately, the fine-grained nature of these computations resulted in poor

cache reuse and significant overhead due to false sharing. Explicit data decomposition with

remapping or a truly fiat memory system wouhl be required to improve these performance
numbers.

Finally, the Tera MTA was the most impressive machine for our dynamic and irregular appli-

cation. The multithreaded implementation required a trivial amount of additional (:ode and

3Different programming paradigms required varying nunfl)ers of operations.
4()nly four processors are available on the current configuralion of ihe Tera MTA.

10

had little memory overhea<t. The complexities of data distribution, repartitioning, remap-

piing, or gral>h coloring were absent on this system. Our overall results have demonstrated

that muttithrea.ded systems offer tremendous potential for quickly amt efficiently solving

some of the most challenging real-life problems on parallel computers.

References

[1] R. Biswas and R.C. Strawn, "A new procedure for dynamic adapt|on of three-dimensional

unstructured grids," Applied Numerical Mathematics, 13 (1994) 437-452.

[2] S.II. Bokhari and D.J. Mavrit)lis, "The Tera Muitithreaded Architecture and unstructured

meshes," ICASE, NASA Langley Research Center, NASA/CR-1998-208953, 1998.

[3] G. Ileber, R. Biswas, and G.R. Gao, "Self-avoiding walks over adaptive unstructured

grids." Parallel and Distributed Processing, LNCS 1586 (1999) 968-977.

[4] G. Karypis and V. I(umar, "Parallel multilevel k-way partitioning scheme for irregular

graphs," Department of Computer Science, University of Minnesota, TR 96-036, 1996.

[5] L. ()liker and R. Biswas, "PLUM: Parallel load balancing for adaptive unstructured

meshes," Journal of Parallel and Distributed Computing, 52 (1998) 150-177.

11

